Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
人
人工智能系统实战第三期
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
yy
人工智能系统实战第三期
Commits
e0f23f19
Commit
e0f23f19
authored
Jan 29, 2024
by
前钰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
00faa7cc
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
180 additions
and
0 deletions
+180
-0
GoogLeNet.py
人工智能系统实战第三期/实战代码/计算机视觉/CNN/network/GoogLeNet.py
+180
-0
No files found.
人工智能系统实战第三期/实战代码/计算机视觉/CNN/network/GoogLeNet.py
0 → 100644
View file @
e0f23f19
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch
import
torch.nn.functional
as
F
class
BasicConv2d
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
out_channels
,
**
kwargs
):
super
(
BasicConv2d
,
self
)
.
__init__
()
self
.
conv
=
nn
.
Conv2d
(
in_channels
,
out_channels
,
**
kwargs
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
relu
(
x
)
return
x
class
Inception
(
nn
.
Module
):
# (192, 64, 96, 128, 16, 32, 32)
def
__init__
(
self
,
in_channels
,
ch1x1
,
ch3x3red
,
ch3x3
,
ch5x5red
,
ch5x5
,
pool_proj
):
super
(
Inception
,
self
)
.
__init__
()
self
.
branch1
=
BasicConv2d
(
in_channels
,
ch1x1
,
kernel_size
=
1
)
self
.
branch2
=
nn
.
Sequential
(
BasicConv2d
(
in_channels
,
ch3x3red
,
kernel_size
=
1
),
BasicConv2d
(
ch3x3red
,
ch3x3
,
kernel_size
=
3
,
padding
=
1
)
# 保证输出大小等于输入大小
)
self
.
branch3
=
nn
.
Sequential
(
BasicConv2d
(
in_channels
,
ch5x5red
,
kernel_size
=
1
),
# 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
# Please see https://github.com/pytorch/vision/issues/906 for details.
BasicConv2d
(
ch5x5red
,
ch5x5
,
kernel_size
=
5
,
padding
=
2
)
# 保证输出大小等于输入大小
)
self
.
branch4
=
nn
.
Sequential
(
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
1
,
padding
=
1
),
BasicConv2d
(
in_channels
,
pool_proj
,
kernel_size
=
1
)
)
def
forward
(
self
,
x
):
branch1
=
self
.
branch1
(
x
)
branch2
=
self
.
branch2
(
x
)
branch3
=
self
.
branch3
(
x
)
branch4
=
self
.
branch4
(
x
)
outputs
=
[
branch1
,
branch2
,
branch3
,
branch4
]
return
torch
.
cat
(
outputs
,
1
)
# 在通道的维度上进行concat
class
InceptionAux
(
nn
.
Module
):
# 辅助分类器板块
def
__init__
(
self
,
in_channels
,
num_classes
):
super
(
InceptionAux
,
self
)
.
__init__
()
self
.
averagePool
=
nn
.
AvgPool2d
(
kernel_size
=
5
,
stride
=
3
)
self
.
conv
=
BasicConv2d
(
in_channels
,
128
,
kernel_size
=
1
)
# output[batch, 128, 4, 4]
self
.
fc1
=
nn
.
Linear
(
2048
,
1024
)
self
.
fc2
=
nn
.
Linear
(
1024
,
num_classes
)
def
forward
(
self
,
x
):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x
=
self
.
averagePool
(
x
)
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x
=
self
.
conv
(
x
)
# N x 128 x 4 x 4
x
=
torch
.
flatten
(
x
,
1
)
x
=
F
.
dropout
(
x
,
0.5
,
training
=
self
.
training
)
# N x 2048
x
=
F
.
relu
(
self
.
fc1
(
x
),
inplace
=
True
)
x
=
F
.
dropout
(
x
,
0.5
,
training
=
self
.
training
)
# N x 1024
x
=
self
.
fc2
(
x
)
# N x num_classes
return
x
# 1.基础卷积
# 2.inception实现
# 3.辅助分类器
class
GoogLeNet
(
nn
.
Module
):
def
__init__
(
self
,
num_classes
=
1000
,
aux_logits
=
True
,
init_weights
=
False
):
super
(
GoogLeNet
,
self
)
.
__init__
()
self
.
aux_logits
=
aux_logits
self
.
conv1
=
BasicConv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
)
self
.
maxpool1
=
nn
.
MaxPool2d
(
3
,
stride
=
2
,
ceil_mode
=
True
)
self
.
conv2
=
BasicConv2d
(
64
,
64
,
kernel_size
=
1
)
self
.
conv3
=
BasicConv2d
(
64
,
192
,
kernel_size
=
3
,
padding
=
1
)
self
.
maxpool2
=
nn
.
MaxPool2d
(
3
,
stride
=
2
,
ceil_mode
=
True
)
self
.
inception3a
=
Inception
(
192
,
64
,
96
,
128
,
16
,
32
,
32
)
self
.
inception3b
=
Inception
(
256
,
128
,
128
,
192
,
32
,
96
,
64
)
self
.
maxpool3
=
nn
.
MaxPool2d
(
3
,
stride
=
2
,
ceil_mode
=
True
)
self
.
inception4a
=
Inception
(
480
,
192
,
96
,
208
,
16
,
48
,
64
)
self
.
inception4b
=
Inception
(
512
,
160
,
112
,
224
,
24
,
64
,
64
)
self
.
inception4c
=
Inception
(
512
,
128
,
128
,
256
,
24
,
64
,
64
)
self
.
inception4d
=
Inception
(
512
,
112
,
144
,
288
,
32
,
64
,
64
)
self
.
inception4e
=
Inception
(
528
,
256
,
160
,
320
,
32
,
128
,
128
)
self
.
maxpool4
=
nn
.
MaxPool2d
(
3
,
stride
=
2
,
ceil_mode
=
True
)
self
.
inception5a
=
Inception
(
832
,
256
,
160
,
320
,
32
,
128
,
128
)
self
.
inception5b
=
Inception
(
832
,
384
,
192
,
384
,
48
,
128
,
128
)
if
self
.
aux_logits
:
self
.
aux1
=
InceptionAux
(
512
,
num_classes
)
self
.
aux2
=
InceptionAux
(
528
,
num_classes
)
self
.
avgpool
=
nn
.
AdaptiveAvgPool2d
((
1
,
1
))
self
.
dropout
=
nn
.
Dropout
(
0.4
)
self
.
fc
=
nn
.
Linear
(
1024
,
num_classes
)
if
init_weights
:
self
.
_initialize_weights
()
def
forward
(
self
,
x
):
# N x 3 x 224 x 224
x
=
self
.
conv1
(
x
)
# N x 64 x 112 x 112
x
=
self
.
maxpool1
(
x
)
# N x 64 x 56 x 56
x
=
self
.
conv2
(
x
)
# N x 64 x 56 x 56
x
=
self
.
conv3
(
x
)
# N x 192 x 56 x 56
x
=
self
.
maxpool2
(
x
)
# N x 192 x 28 x 28
x
=
self
.
inception3a
(
x
)
# N x 256 x 28 x 28
x
=
self
.
inception3b
(
x
)
# N x 480 x 28 x 28
x
=
self
.
maxpool3
(
x
)
# N x 480 x 14 x 14
x
=
self
.
inception4a
(
x
)
# N x 512 x 14 x 14
if
self
.
training
and
self
.
aux_logits
:
# eval model lose this layer
aux1
=
self
.
aux1
(
x
)
x
=
self
.
inception4b
(
x
)
# N x 512 x 14 x 14
x
=
self
.
inception4c
(
x
)
# N x 512 x 14 x 14
x
=
self
.
inception4d
(
x
)
# N x 528 x 14 x 14
if
self
.
training
and
self
.
aux_logits
:
# eval model lose this layer
aux2
=
self
.
aux2
(
x
)
x
=
self
.
inception4e
(
x
)
# N x 832 x 14 x 14
x
=
self
.
maxpool4
(
x
)
# N x 832 x 7 x 7
x
=
self
.
inception5a
(
x
)
# N x 832 x 7 x 7
x
=
self
.
inception5b
(
x
)
# N x 1024 x 7 x 7
x
=
self
.
avgpool
(
x
)
# N x 1024 x [1 x 1]
x
=
torch
.
flatten
(
x
,
1
)
# N x 1024
x
=
self
.
dropout
(
x
)
x
=
self
.
fc
(
x
)
# N x 1000 (num_classes)
if
self
.
training
and
self
.
aux_logits
:
# eval model lose this layer
return
x
,
aux2
,
aux1
return
x
def
_initialize_weights
(
self
):
for
m
in
self
.
modules
():
if
isinstance
(
m
,
nn
.
Conv2d
):
nn
.
init
.
kaiming_normal_
(
m
.
weight
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
)
if
m
.
bias
is
not
None
:
nn
.
init
.
constant_
(
m
.
bias
,
0
)
elif
isinstance
(
m
,
nn
.
Linear
):
nn
.
init
.
normal_
(
m
.
weight
,
0
,
0.01
)
nn
.
init
.
constant_
(
m
.
bias
,
0
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment