Commit 00faa7cc by 前钰

Upload New File

parent 87ba348b
import torch
import torch
import torch.nn as nn
# 定义ResNet的基本块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(identity)
out = self.relu(out)
return out
# 定义ResNet的主体结构
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], stride=1) # 输入图像大小: (224, 224) -> 输出图像大小: (56, 56)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) # 输入图像大小: (56, 56) -> 输出图像大小: (28, 28)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # 输入图像大小: (28, 28) -> 输出图像大小: (14, 14)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # 输入图像大小: (14, 14) -> 输出图像大小: (7, 7)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x) # 输入图像大小: (224, 224) -> 输出图像大小: (112, 112)
out = self.bn1(out)
out = self.relu(out)
out = self.maxpool(out) # 输入图像大小: (112, 112) -> 输出图像大小: (56, 56)
out = self.layer1(out) # 输入图像大小: (56, 56) -> 输出图像大小: (56, 56)
out = self.layer2(out) # 输入图像大小: (56, 56) -> 输出图像大小: (28, 28)
out = self.layer3(out) # 输入图像大小: (28, 28) -> 输出图像大小: (14, 14)
out = self.layer4(out) # 输入图像大小: (14, 14) -> 输出图像大小: (7, 7)
out = self.avgpool(out) # [1]
out = torch.flatten(out, 1)
out = self.fc(out)
return out
# 创建ResNet-50模型
def resnet50(num_classes=1000):
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
def resnet101(num_classes=1000):
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment