Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
人
人工智能系统实战第三期
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
yy
人工智能系统实战第三期
Commits
00faa7cc
Commit
00faa7cc
authored
Jan 29, 2024
by
前钰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
87ba348b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
92 additions
and
0 deletions
+92
-0
ResNet.py
人工智能系统实战第三期/实战代码/计算机视觉/CNN/network/ResNet.py
+92
-0
No files found.
人工智能系统实战第三期/实战代码/计算机视觉/CNN/network/ResNet.py
0 → 100644
View file @
00faa7cc
import
torch
import
torch
import
torch.nn
as
nn
# 定义ResNet的基本块
class
BasicBlock
(
nn
.
Module
):
expansion
=
1
def
__init__
(
self
,
in_channels
,
out_channels
,
stride
=
1
):
super
(
BasicBlock
,
self
)
.
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
bias
=
False
)
self
.
bn1
=
nn
.
BatchNorm2d
(
out_channels
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
conv2
=
nn
.
Conv2d
(
out_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
bn2
=
nn
.
BatchNorm2d
(
out_channels
)
self
.
shortcut
=
nn
.
Sequential
()
if
stride
!=
1
or
in_channels
!=
self
.
expansion
*
out_channels
:
self
.
shortcut
=
nn
.
Sequential
(
nn
.
Conv2d
(
in_channels
,
self
.
expansion
*
out_channels
,
kernel_size
=
1
,
stride
=
stride
,
bias
=
False
),
nn
.
BatchNorm2d
(
self
.
expansion
*
out_channels
)
)
def
forward
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
out
+=
self
.
shortcut
(
identity
)
out
=
self
.
relu
(
out
)
return
out
# 定义ResNet的主体结构
class
ResNet
(
nn
.
Module
):
def
__init__
(
self
,
block
,
layers
,
num_classes
=
1000
):
super
(
ResNet
,
self
)
.
__init__
()
self
.
in_channels
=
64
self
.
conv1
=
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
,
bias
=
False
)
self
.
bn1
=
nn
.
BatchNorm2d
(
64
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
layer1
=
self
.
_make_layer
(
block
,
64
,
layers
[
0
],
stride
=
1
)
# 输入图像大小: (224, 224) -> 输出图像大小: (56, 56)
self
.
layer2
=
self
.
_make_layer
(
block
,
128
,
layers
[
1
],
stride
=
2
)
# 输入图像大小: (56, 56) -> 输出图像大小: (28, 28)
self
.
layer3
=
self
.
_make_layer
(
block
,
256
,
layers
[
2
],
stride
=
2
)
# 输入图像大小: (28, 28) -> 输出图像大小: (14, 14)
self
.
layer4
=
self
.
_make_layer
(
block
,
512
,
layers
[
3
],
stride
=
2
)
# 输入图像大小: (14, 14) -> 输出图像大小: (7, 7)
self
.
avgpool
=
nn
.
AdaptiveAvgPool2d
((
1
,
1
))
self
.
fc
=
nn
.
Linear
(
512
*
block
.
expansion
,
num_classes
)
def
_make_layer
(
self
,
block
,
out_channels
,
blocks
,
stride
=
1
):
layers
=
[]
layers
.
append
(
block
(
self
.
in_channels
,
out_channels
,
stride
))
self
.
in_channels
=
out_channels
*
block
.
expansion
for
_
in
range
(
1
,
blocks
):
layers
.
append
(
block
(
self
.
in_channels
,
out_channels
))
return
nn
.
Sequential
(
*
layers
)
def
forward
(
self
,
x
):
out
=
self
.
conv1
(
x
)
# 输入图像大小: (224, 224) -> 输出图像大小: (112, 112)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
maxpool
(
out
)
# 输入图像大小: (112, 112) -> 输出图像大小: (56, 56)
out
=
self
.
layer1
(
out
)
# 输入图像大小: (56, 56) -> 输出图像大小: (56, 56)
out
=
self
.
layer2
(
out
)
# 输入图像大小: (56, 56) -> 输出图像大小: (28, 28)
out
=
self
.
layer3
(
out
)
# 输入图像大小: (28, 28) -> 输出图像大小: (14, 14)
out
=
self
.
layer4
(
out
)
# 输入图像大小: (14, 14) -> 输出图像大小: (7, 7)
out
=
self
.
avgpool
(
out
)
# [1]
out
=
torch
.
flatten
(
out
,
1
)
out
=
self
.
fc
(
out
)
return
out
# 创建ResNet-50模型
def
resnet50
(
num_classes
=
1000
):
return
ResNet
(
BasicBlock
,
[
3
,
4
,
6
,
3
],
num_classes
)
def
resnet101
(
num_classes
=
1000
):
return
ResNet
(
BasicBlock
,
[
3
,
4
,
6
,
3
],
num_classes
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment