Commit c2188f1b by 前钰

Upload New File

parent c73cfffd
import torch
import torch
import torch.nn as nn
import torch.nn.functional as F
class DenseLayer(nn.Sequential):
"""Basic unit of DenseBlock (using bottleneck layer) """
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(DenseLayer, self).__init__()
self.bn1 = nn.BatchNorm2d(num_input_features)
self.relu1 = nn.ReLU()
self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(bn_size * growth_rate)
self.relu2 = nn.ReLU()
self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
self.drop_rate = drop_rate
def forward(self, x):
output = self.bn1(x)
output = self.relu1(output)
output = self.conv1(output)
output = self.bn2(output)
output = self.relu2(output)
output = self.conv2(output)
if self.drop_rate > 0:
output = F.dropout(output, p=self.drop_rate)
return torch.cat([x, output], 1) # x = xi-1 + ... + x0 + out (out= conv(xi-1))
class DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(DenseBlock, self).__init__()
for i in range(num_layers):
if i == 0:
self.layer = nn.Sequential(
DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
)
else:
layer = DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.layer.add_module("denselayer%d" % (i + 1), layer)
def forward(self, input):
return self.layer(input)
class Transition(nn.Sequential):
def __init__(self, num_input_feature, num_output_features):
super(Transition, self).__init__()
self.bn = nn.BatchNorm2d(num_input_feature)
self.relu = nn.ReLU()
self.conv = nn.Conv2d(num_input_feature, num_output_features, kernel_size=1, stride=1, bias=False)
self.pool = nn.AvgPool2d(2, stride=2)
def forward(self, input):
output = self.bn(input)
output = self.relu(output)
output = self.conv(output)
output = self.pool(output)
return output
class DenseNet(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4,
compression_rate=0.5, drop_rate=0, num_classes=1000):
super(DenseNet, self).__init__()
# 前部
self.features = nn.Sequential(
# 第一层
nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(num_init_features),
nn.ReLU(),
# 第二层
nn.MaxPool2d(3, stride=2, padding=1)
)
# DenseBlock
num_features = num_init_features
for i, num_layers in enumerate(block_config): # enumerate 取出索引和对应的值,0:6
block = DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
if i == 0:
self.block_tran = nn.Sequential(
block
)
else:
self.block_tran.add_module("denseblock%d" % (i + 1), block) # 添加一个block
num_features += num_layers * growth_rate # 更新通道数
if i != len(block_config) - 1: # 除去最后一层不需要加Transition来连接两个相邻的DenseBlock
transition = Transition(num_features, int(num_features * compression_rate))
self.block_tran.add_module("transition%d" % (i + 1), transition) # 添加Transition
num_features = int(num_features * compression_rate) # 更新通道数
# 后部 bn+ReLU
self.tail = nn.Sequential(
nn.BatchNorm2d(num_features),
nn.ReLU()
)
# classification layer
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
block_output = self.block_tran(features)
tail_output = self.tail(block_output)
out = F.avg_pool2d(tail_output, 7, stride=1).view(tail_output.size(0), -1) # 平均池化
out = self.classifier(out)
return out
# model = DenseNet(num_classes=5)
# print(model)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment