Commit d29a157c by 前钰

Upload New File

parent 609daa02
import gc
import gc
import torch.nn as nn
import torch
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[96, 55, 55]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[96, 27, 27]
nn.Conv2d(96, 256, kernel_size=5, padding=2), # output[256, 27, 27]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[256, 13, 13]
nn.Conv2d(256, 384, kernel_size=3, padding=1), # output[384, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1), # output[384, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1), # output[256, 13, 13]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[256, 6, 6]
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
import os
import sys
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm
def main():
# 判断可用设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device('cpu')
print("using {} device.".format(device))
# 注意改成自己的数据集路径
data_path = 'data'
assert os.path.exists(data_path), "{} path does not exist.".format(data_path)
# 数据预处理与增强
"""
ToTensor()能够把灰度范围从0-255变换到0-1之间的张量.
transform.Normalize()则把0-1变换到(-1,1). 具体地说, 对每个通道而言, Normalize执行以下操作: image=(image-mean)/std
其中mean和std分别通过(0.5,0.5,0.5)和(0.5,0.5,0.5)进行指定。原来的0-1最小值0则变成(0-0.5)/0.5=-1; 而最大值1则变成(1-0.5)/0.5=1.
也就是一个均值为0, 方差为1的正态分布. 这样的数据输入格式可以使神经网络更快收敛。
"""
data_transform = {
"train": transforms.Compose([transforms.Resize(224),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
"val": transforms.Compose([transforms.Resize((224, 224)), # val不需要任何数据增强
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
# 使用ImageFlolder加载数据集中的图像,并使用指定的预处理操作来处理图像, ImageFlolder会同时返回图像和对应的标签。 (image path, class_index) tuples
# data/train/
train_dataset = datasets.ImageFolder(root=os.path.join(data_path, "train"), transform=data_transform["train"])
validate_dataset = datasets.ImageFolder(root=os.path.join(data_path, "val"), transform=data_transform["val"])
train_num = len(train_dataset)
val_num = len(validate_dataset)
batch_size = 64 # batch_size大小,是超参,可调,如果模型跑不起来,尝试调小batch_size
# 使用 DataLoader 将 ImageFloder 加载的数据集处理成批量(batch)加载模式
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True )
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=4, shuffle=False ) # 注意,验证集不需要shuffle
print("using {} images for training, {} images for validation.".format(train_num, val_num))
# 实例化模型,并送进设备
net = AlexNet(num_classes=5)
net.to(device)
# 指定损失函数用于计算损失;指定优化器用于更新模型参数;指定训练迭代的轮数,训练权重的存储地址
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0002)
epochs = 70
save_path = os.path.abspath(os.path.join(os.getcwd(), 'results/weights/alexnet'))
if not os.path.exists(save_path):
os.makedirs(save_path)
for epoch in range(epochs):
############################################################## train ######################################################
net.train()
acc_num = torch.zeros(1).to(device) # 初始化,用于计算训练过程中预测正确的数量
sample_num = 0 # 初始化,用于记录当前迭代中,已经计算了多少个样本
# tqdm是一个进度条显示器,可以在终端打印出现在的训练进度
train_bar = tqdm(train_loader, file=sys.stdout, ncols=100)
for data in train_bar :
images, labels = data
sample_num += images.shape[0] #[64, 3, 224, 224]
optimizer.zero_grad()
outputs = net(images.to(device)) # output_shape: [batch_size, num_classes]
pred_class = torch.max(outputs, dim=1)[1] # torch.max 返回值是一个tuple,第一个元素是max值,第二个元素是max值的索引。
acc_num += torch.eq(pred_class, labels.to(device)).sum()
loss = loss_function(outputs, labels.to(device)) # 求损失
loss.backward() # 自动求导
optimizer.step() # 梯度下降
# print statistics
train_acc = acc_num.item() / sample_num
# .desc是进度条tqdm中的成员变量,作用是描述信息
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss)
# validate
net.eval()
acc_num = 0.0 # accumulate accurate number per epoch
with torch.no_grad():
for val_data in validate_loader:
val_images, val_labels = val_data
outputs = net(val_images.to(device))
predict_y = torch.max(outputs, dim=1)[1]
acc_num += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_accurate = acc_num / val_num
print('[epoch %d] train_loss: %.3f train_acc: %.3f val_accuracy: %.3f' % (epoch + 1, loss, train_acc, val_accurate))
torch.save(net.state_dict(), os.path.join(save_path, "AlexNet.pth") )
# 每次迭代后清空这些指标,重新计算
train_acc = 0.0
val_accurate = 0.0
print('Finished Training')
# if __name__ == '__main__':
# main()
main()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment