Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
人
人工智能系统实战第三期
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Charles
人工智能系统实战第三期
Commits
b8c619cc
Commit
b8c619cc
authored
Dec 16, 2023
by
前钰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
94d8b409
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
87 additions
and
0 deletions
+87
-0
main.py
人工智能系统实战第三期/实战代码/深度学习项目实战/生成对抗网络/main.py
+87
-0
No files found.
人工智能系统实战第三期/实战代码/深度学习项目实战/生成对抗网络/main.py
0 → 100644
View file @
b8c619cc
from
DCGAN
import
build_dc_classifier
,
build_dc_generator
from
DCGAN
import
build_dc_classifier
,
build_dc_generator
from
utils
import
train_data
,
deprocess_img
,
show_images
import
torch
from
torch
import
nn
from
torch.autograd
import
Variable
import
torchvision.transforms
as
tfs
from
torch.utils.data
import
DataLoader
,
sampler
from
torchvision.datasets
import
MNIST
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib.gridspec
as
gridspec
if
__name__
==
'__main__'
:
bce_loss
=
nn
.
BCEWithLogitsLoss
()
def
discriminator_loss
(
logits_real
,
logits_fake
):
# 判别器的 loss
size
=
logits_real
.
shape
[
0
]
true_labels
=
Variable
(
torch
.
ones
(
size
,
1
))
.
float
()
.
cuda
()
false_labels
=
Variable
(
torch
.
zeros
(
size
,
1
))
.
float
()
.
cuda
()
loss
=
bce_loss
(
logits_real
,
true_labels
)
+
bce_loss
(
logits_fake
,
false_labels
)
return
loss
# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def
get_optimizer
(
net
):
optimizer
=
torch
.
optim
.
Adam
(
net
.
parameters
(),
lr
=
3e-4
,
betas
=
(
0.5
,
0.999
))
return
optimizer
def
generator_loss
(
logits_fake
):
# 生成器的 loss
size
=
logits_fake
.
shape
[
0
]
true_labels
=
Variable
(
torch
.
ones
(
size
,
1
))
.
float
()
.
cuda
()
loss
=
bce_loss
(
logits_fake
,
true_labels
)
return
loss
def
train_dc_gan
(
D_net
,
G_net
,
D_optimizer
,
G_optimizer
,
discriminator_loss
,
generator_loss
,
show_every
=
250
,
noise_size
=
96
,
num_epochs
=
4000
):
iter_count
=
0
for
epoch
in
range
(
num_epochs
):
for
x
,
_
in
train_data
:
bs
=
x
.
shape
[
0
]
# 判别网络
real_data
=
Variable
(
x
)
.
cuda
()
# 真实数据
logits_real
=
D_net
(
real_data
)
# 判别网络得分
sample_noise
=
(
torch
.
rand
(
bs
,
noise_size
)
-
0.5
)
/
0.5
# -1 ~ 1 的均匀分布
g_fake_seed
=
Variable
(
sample_noise
)
.
cuda
()
fake_images
=
G_net
(
g_fake_seed
)
# 生成的假的数据
logits_fake
=
D_net
(
fake_images
)
# 判别网络得分
d_total_error
=
discriminator_loss
(
logits_real
,
logits_fake
)
# 判别器的 loss
D_optimizer
.
zero_grad
()
d_total_error
.
backward
()
D_optimizer
.
step
()
# 优化判别网络
# 生成网络
g_fake_seed
=
Variable
(
sample_noise
)
.
cuda
()
fake_images
=
G_net
(
g_fake_seed
)
# 生成的假的数据
gen_logits_fake
=
D_net
(
fake_images
)
g_error
=
generator_loss
(
gen_logits_fake
)
# 生成网络的 loss
G_optimizer
.
zero_grad
()
g_error
.
backward
()
G_optimizer
.
step
()
# 优化生成网络
if
(
iter_count
%
show_every
==
0
):
print
(
'Iter: {}, D: {:.4}, G:{:.4}'
.
format
(
iter_count
,
d_total_error
.
item
(),
g_error
.
item
()))
imgs_numpy
=
deprocess_img
(
fake_images
.
data
.
cpu
()
.
numpy
())
show_images
(
imgs_numpy
[
0
:
16
])
plt
.
show
()
print
()
iter_count
+=
1
D_DC
=
build_dc_classifier
()
.
cuda
()
G_DC
=
build_dc_generator
()
.
cuda
()
D_DC_optim
=
get_optimizer
(
D_DC
)
G_DC_optim
=
get_optimizer
(
G_DC
)
train_dc_gan
(
D_DC
,
G_DC
,
D_DC_optim
,
G_DC_optim
,
discriminator_loss
,
generator_loss
,
num_epochs
=
4000
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment