Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
人
人工智能系统实战第三期
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Charles
人工智能系统实战第三期
Commits
1c2d73ed
Commit
1c2d73ed
authored
Mar 02, 2024
by
前钰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
ce5e7771
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
127 additions
and
0 deletions
+127
-0
data.py
人工智能系统实战第三期/实战代码/计算机视觉/FCN&UNet/data.py
+127
-0
No files found.
人工智能系统实战第三期/实战代码/计算机视觉/FCN&UNet/data.py
0 → 100644
View file @
1c2d73ed
from
__future__
import
print_function
from
__future__
import
print_function
from
keras.preprocessing.image
import
ImageDataGenerator
import
numpy
as
np
import
os
import
glob
import
skimage.io
as
io
import
skimage.transform
as
trans
Sky
=
[
128
,
128
,
128
]
Building
=
[
128
,
0
,
0
]
Pole
=
[
192
,
192
,
128
]
Road
=
[
128
,
64
,
128
]
Pavement
=
[
60
,
40
,
222
]
Tree
=
[
128
,
128
,
0
]
SignSymbol
=
[
192
,
128
,
128
]
Fence
=
[
64
,
64
,
128
]
Car
=
[
64
,
0
,
128
]
Pedestrian
=
[
64
,
64
,
0
]
Bicyclist
=
[
0
,
128
,
192
]
Unlabelled
=
[
0
,
0
,
0
]
COLOR_DICT
=
np
.
array
([
Sky
,
Building
,
Pole
,
Road
,
Pavement
,
Tree
,
SignSymbol
,
Fence
,
Car
,
Pedestrian
,
Bicyclist
,
Unlabelled
])
def
adjustData
(
img
,
mask
,
flag_multi_class
,
num_class
):
if
(
flag_multi_class
):
img
=
img
/
255
mask
=
mask
[:,:,:,
0
]
if
(
len
(
mask
.
shape
)
==
4
)
else
mask
[:,:,
0
]
new_mask
=
np
.
zeros
(
mask
.
shape
+
(
num_class
,))
for
i
in
range
(
num_class
):
#for one pixel in the image, find the class in mask and convert it into one-hot vector
#index = np.where(mask == i)
#index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
#new_mask[index_mask] = 1
new_mask
[
mask
==
i
,
i
]
=
1
new_mask
=
np
.
reshape
(
new_mask
,(
new_mask
.
shape
[
0
],
new_mask
.
shape
[
1
]
*
new_mask
.
shape
[
2
],
new_mask
.
shape
[
3
]))
if
flag_multi_class
else
np
.
reshape
(
new_mask
,(
new_mask
.
shape
[
0
]
*
new_mask
.
shape
[
1
],
new_mask
.
shape
[
2
]))
mask
=
new_mask
elif
(
np
.
max
(
img
)
>
1
):
img
=
img
/
255
mask
=
mask
/
255
mask
[
mask
>
0.5
]
=
1
mask
[
mask
<=
0.5
]
=
0
return
(
img
,
mask
)
def
trainGenerator
(
batch_size
,
train_path
,
image_folder
,
mask_folder
,
aug_dict
,
image_color_mode
=
"grayscale"
,
mask_color_mode
=
"grayscale"
,
image_save_prefix
=
"image"
,
mask_save_prefix
=
"mask"
,
flag_multi_class
=
False
,
num_class
=
2
,
save_to_dir
=
None
,
target_size
=
(
256
,
256
),
seed
=
1
):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
image_datagen
=
ImageDataGenerator
(
**
aug_dict
)
mask_datagen
=
ImageDataGenerator
(
**
aug_dict
)
image_generator
=
image_datagen
.
flow_from_directory
(
train_path
,
classes
=
[
image_folder
],
class_mode
=
None
,
color_mode
=
image_color_mode
,
target_size
=
target_size
,
batch_size
=
batch_size
,
save_to_dir
=
save_to_dir
,
save_prefix
=
image_save_prefix
,
seed
=
seed
)
mask_generator
=
mask_datagen
.
flow_from_directory
(
train_path
,
classes
=
[
mask_folder
],
class_mode
=
None
,
color_mode
=
mask_color_mode
,
target_size
=
target_size
,
batch_size
=
batch_size
,
save_to_dir
=
save_to_dir
,
save_prefix
=
mask_save_prefix
,
seed
=
seed
)
train_generator
=
zip
(
image_generator
,
mask_generator
)
for
(
img
,
mask
)
in
train_generator
:
img
,
mask
=
adjustData
(
img
,
mask
,
flag_multi_class
,
num_class
)
yield
(
img
,
mask
)
def
testGenerator
(
test_path
,
num_image
=
30
,
target_size
=
(
256
,
256
),
flag_multi_class
=
False
,
as_gray
=
True
):
for
i
in
range
(
num_image
):
img
=
io
.
imread
(
os
.
path
.
join
(
test_path
,
"
%
d.png"
%
i
),
as_gray
=
as_gray
)
img
=
img
/
255
img
=
trans
.
resize
(
img
,
target_size
)
img
=
np
.
reshape
(
img
,
img
.
shape
+
(
1
,))
if
(
not
flag_multi_class
)
else
img
img
=
np
.
reshape
(
img
,(
1
,)
+
img
.
shape
)
yield
img
def
geneTrainNpy
(
image_path
,
mask_path
,
flag_multi_class
=
False
,
num_class
=
2
,
image_prefix
=
"image"
,
mask_prefix
=
"mask"
,
image_as_gray
=
True
,
mask_as_gray
=
True
):
image_name_arr
=
glob
.
glob
(
os
.
path
.
join
(
image_path
,
"
%
s*.png"
%
image_prefix
))
image_arr
=
[]
mask_arr
=
[]
for
index
,
item
in
enumerate
(
image_name_arr
):
img
=
io
.
imread
(
item
,
as_gray
=
image_as_gray
)
img
=
np
.
reshape
(
img
,
img
.
shape
+
(
1
,))
if
image_as_gray
else
img
mask
=
io
.
imread
(
item
.
replace
(
image_path
,
mask_path
)
.
replace
(
image_prefix
,
mask_prefix
),
as_gray
=
mask_as_gray
)
mask
=
np
.
reshape
(
mask
,
mask
.
shape
+
(
1
,))
if
mask_as_gray
else
mask
img
,
mask
=
adjustData
(
img
,
mask
,
flag_multi_class
,
num_class
)
image_arr
.
append
(
img
)
mask_arr
.
append
(
mask
)
image_arr
=
np
.
array
(
image_arr
)
mask_arr
=
np
.
array
(
mask_arr
)
return
image_arr
,
mask_arr
def
labelVisualize
(
num_class
,
color_dict
,
img
):
img
=
img
[:,:,
0
]
if
len
(
img
.
shape
)
==
3
else
img
img_out
=
np
.
zeros
(
img
.
shape
+
(
3
,))
for
i
in
range
(
num_class
):
img_out
[
img
==
i
,:]
=
color_dict
[
i
]
return
img_out
/
255
def
saveResult
(
save_path
,
npyfile
,
flag_multi_class
=
False
,
num_class
=
2
):
for
i
,
item
in
enumerate
(
npyfile
):
img
=
labelVisualize
(
num_class
,
COLOR_DICT
,
item
)
if
flag_multi_class
else
item
[:,:,
0
]
img
=
img
.
astype
(
np
.
uint8
)
io
.
imsave
(
os
.
path
.
join
(
save_path
,
"
%
d_predict.png"
%
i
),
img
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment