Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
人
人工智能系统实战第三期
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ding
人工智能系统实战第三期
Commits
c08c73a3
Commit
c08c73a3
authored
Jun 26, 2024
by
前钰
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
63574713
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
838 additions
and
0 deletions
+838
-0
train(1).py
人工智能系统实战第三期/实战代码/计算机视觉/基于yolo系列的动物图像检测实战/train(1).py
+838
-0
No files found.
人工智能系统实战第三期/实战代码/计算机视觉/基于yolo系列的动物图像检测实战/train(1).py
0 → 100644
View file @
c08c73a3
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
Usage - Single-GPU training:
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
Usage - Multi-GPU DDP training:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
Models: https://github.com/ultralytics/yolov5/tree/master/models
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""
import
argparse
import
math
import
os
import
random
import
subprocess
import
sys
import
time
from
copy
import
deepcopy
from
datetime
import
datetime
,
timedelta
from
pathlib
import
Path
try
:
import
comet_ml
# must be imported before torch (if installed)
except
ImportError
:
comet_ml
=
None
import
numpy
as
np
import
torch
import
torch.distributed
as
dist
import
torch.nn
as
nn
import
yaml
from
torch.optim
import
lr_scheduler
from
tqdm
import
tqdm
FILE
=
Path
(
__file__
)
.
resolve
()
ROOT
=
FILE
.
parents
[
0
]
# YOLOv5 root directory
if
str
(
ROOT
)
not
in
sys
.
path
:
sys
.
path
.
append
(
str
(
ROOT
))
# add ROOT to PATH
ROOT
=
Path
(
os
.
path
.
relpath
(
ROOT
,
Path
.
cwd
()))
# relative
import
val
as
validate
# for end-of-epoch mAP
from
models.experimental
import
attempt_load
from
models.yolo
import
Model
from
utils.autoanchor
import
check_anchors
from
utils.autobatch
import
check_train_batch_size
from
utils.callbacks
import
Callbacks
from
utils.dataloaders
import
create_dataloader
from
utils.downloads
import
attempt_download
,
is_url
from
utils.general
import
(
LOGGER
,
TQDM_BAR_FORMAT
,
check_amp
,
check_dataset
,
check_file
,
check_git_info
,
check_git_status
,
check_img_size
,
check_requirements
,
check_suffix
,
check_yaml
,
colorstr
,
get_latest_run
,
increment_path
,
init_seeds
,
intersect_dicts
,
labels_to_class_weights
,
labels_to_image_weights
,
methods
,
one_cycle
,
print_args
,
print_mutation
,
strip_optimizer
,
yaml_save
,
)
from
utils.loggers
import
LOGGERS
,
Loggers
from
utils.loggers.comet.comet_utils
import
check_comet_resume
from
utils.loss
import
ComputeLoss
from
utils.metrics
import
fitness
from
utils.plots
import
plot_evolve
from
utils.torch_utils
import
(
EarlyStopping
,
ModelEMA
,
de_parallel
,
select_device
,
smart_DDP
,
smart_optimizer
,
smart_resume
,
torch_distributed_zero_first
,
)
LOCAL_RANK
=
int
(
os
.
getenv
(
"LOCAL_RANK"
,
-
1
))
# https://pytorch.org/docs/stable/elastic/run.html
RANK
=
int
(
os
.
getenv
(
"RANK"
,
-
1
))
WORLD_SIZE
=
int
(
os
.
getenv
(
"WORLD_SIZE"
,
1
))
GIT_INFO
=
check_git_info
()
def
train
(
hyp
,
opt
,
device
,
callbacks
):
# hyp is path/to/hyp.yaml or hyp dictionary
save_dir
,
epochs
,
batch_size
,
weights
,
single_cls
,
evolve
,
data
,
cfg
,
resume
,
noval
,
nosave
,
workers
,
freeze
=
(
Path
(
opt
.
save_dir
),
opt
.
epochs
,
opt
.
batch_size
,
opt
.
weights
,
opt
.
single_cls
,
opt
.
evolve
,
opt
.
data
,
opt
.
cfg
,
opt
.
resume
,
opt
.
noval
,
opt
.
nosave
,
opt
.
workers
,
opt
.
freeze
,
)
callbacks
.
run
(
"on_pretrain_routine_start"
)
# Directories
w
=
save_dir
/
"weights"
# weights dir
(
w
.
parent
if
evolve
else
w
)
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
# make dir
last
,
best
=
w
/
"last.pt"
,
w
/
"best.pt"
# Hyperparameters
if
isinstance
(
hyp
,
str
):
with
open
(
hyp
,
errors
=
"ignore"
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
LOGGER
.
info
(
colorstr
(
"hyperparameters: "
)
+
", "
.
join
(
f
"{k}={v}"
for
k
,
v
in
hyp
.
items
()))
opt
.
hyp
=
hyp
.
copy
()
# for saving hyps to checkpoints
# Save run settings
if
not
evolve
:
yaml_save
(
save_dir
/
"hyp.yaml"
,
hyp
)
yaml_save
(
save_dir
/
"opt.yaml"
,
vars
(
opt
))
# Loggers
data_dict
=
None
if
RANK
in
{
-
1
,
0
}:
include_loggers
=
list
(
LOGGERS
)
if
getattr
(
opt
,
"ndjson_console"
,
False
):
include_loggers
.
append
(
"ndjson_console"
)
if
getattr
(
opt
,
"ndjson_file"
,
False
):
include_loggers
.
append
(
"ndjson_file"
)
loggers
=
Loggers
(
save_dir
=
save_dir
,
weights
=
weights
,
opt
=
opt
,
hyp
=
hyp
,
logger
=
LOGGER
,
include
=
tuple
(
include_loggers
),
)
# Register actions
for
k
in
methods
(
loggers
):
callbacks
.
register_action
(
k
,
callback
=
getattr
(
loggers
,
k
))
# Process custom dataset artifact link
data_dict
=
loggers
.
remote_dataset
if
resume
:
# If resuming runs from remote artifact
weights
,
epochs
,
hyp
,
batch_size
=
opt
.
weights
,
opt
.
epochs
,
opt
.
hyp
,
opt
.
batch_size
# Config
plots
=
not
evolve
and
not
opt
.
noplots
# create plots
cuda
=
device
.
type
!=
"cpu"
init_seeds
(
opt
.
seed
+
1
+
RANK
,
deterministic
=
True
)
with
torch_distributed_zero_first
(
LOCAL_RANK
):
data_dict
=
data_dict
or
check_dataset
(
data
)
# check if None
train_path
,
val_path
=
data_dict
[
"train"
],
data_dict
[
"val"
]
nc
=
1
if
single_cls
else
int
(
data_dict
[
"nc"
])
# number of classes
names
=
{
0
:
"item"
}
if
single_cls
and
len
(
data_dict
[
"names"
])
!=
1
else
data_dict
[
"names"
]
# class names
is_coco
=
isinstance
(
val_path
,
str
)
and
val_path
.
endswith
(
"coco/val2017.txt"
)
# COCO dataset
# Model
check_suffix
(
weights
,
".pt"
)
# check weights
pretrained
=
weights
.
endswith
(
".pt"
)
if
pretrained
:
with
torch_distributed_zero_first
(
LOCAL_RANK
):
weights
=
attempt_download
(
weights
)
# download if not found locally
ckpt
=
torch
.
load
(
weights
,
map_location
=
"cpu"
)
# load checkpoint to CPU to avoid CUDA memory leak
model
=
Model
(
cfg
or
ckpt
[
"model"
]
.
yaml
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
"anchors"
))
.
to
(
device
)
# create
exclude
=
[
"anchor"
]
if
(
cfg
or
hyp
.
get
(
"anchors"
))
and
not
resume
else
[]
# exclude keys
csd
=
ckpt
[
"model"
]
.
float
()
.
state_dict
()
# checkpoint state_dict as FP32
csd
=
intersect_dicts
(
csd
,
model
.
state_dict
(),
exclude
=
exclude
)
# intersect
model
.
load_state_dict
(
csd
,
strict
=
False
)
# load
LOGGER
.
info
(
f
"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}"
)
# report
else
:
model
=
Model
(
cfg
,
ch
=
3
,
nc
=
nc
,
anchors
=
hyp
.
get
(
"anchors"
))
.
to
(
device
)
# create
amp
=
check_amp
(
model
)
# check AMP
# Freeze
freeze
=
[
f
"model.{x}."
for
x
in
(
freeze
if
len
(
freeze
)
>
1
else
range
(
freeze
[
0
]))]
# layers to freeze
for
k
,
v
in
model
.
named_parameters
():
v
.
requires_grad
=
True
# train all layers
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if
any
(
x
in
k
for
x
in
freeze
):
LOGGER
.
info
(
f
"freezing {k}"
)
v
.
requires_grad
=
False
# Image size
gs
=
max
(
int
(
model
.
stride
.
max
()),
32
)
# grid size (max stride)
imgsz
=
check_img_size
(
opt
.
imgsz
,
gs
,
floor
=
gs
*
2
)
# verify imgsz is gs-multiple
# Batch size
if
RANK
==
-
1
and
batch_size
==
-
1
:
# single-GPU only, estimate best batch size
batch_size
=
check_train_batch_size
(
model
,
imgsz
,
amp
)
loggers
.
on_params_update
({
"batch_size"
:
batch_size
})
# Optimizer
nbs
=
64
# nominal batch size
accumulate
=
max
(
round
(
nbs
/
batch_size
),
1
)
# accumulate loss before optimizing
hyp
[
"weight_decay"
]
*=
batch_size
*
accumulate
/
nbs
# scale weight_decay
optimizer
=
smart_optimizer
(
model
,
opt
.
optimizer
,
hyp
[
"lr0"
],
hyp
[
"momentum"
],
hyp
[
"weight_decay"
])
# Scheduler
if
opt
.
cos_lr
:
lf
=
one_cycle
(
1
,
hyp
[
"lrf"
],
epochs
)
# cosine 1->hyp['lrf']
else
:
lf
=
lambda
x
:
(
1
-
x
/
epochs
)
*
(
1.0
-
hyp
[
"lrf"
])
+
hyp
[
"lrf"
]
# linear
scheduler
=
lr_scheduler
.
LambdaLR
(
optimizer
,
lr_lambda
=
lf
)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema
=
ModelEMA
(
model
)
if
RANK
in
{
-
1
,
0
}
else
None
# Resume
best_fitness
,
start_epoch
=
0.0
,
0
if
pretrained
:
if
resume
:
best_fitness
,
start_epoch
,
epochs
=
smart_resume
(
ckpt
,
optimizer
,
ema
,
weights
,
epochs
,
resume
)
del
ckpt
,
csd
# DP mode
if
cuda
and
RANK
==
-
1
and
torch
.
cuda
.
device_count
()
>
1
:
LOGGER
.
warning
(
"WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.
\n
"
"See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
)
model
=
torch
.
nn
.
DataParallel
(
model
)
# SyncBatchNorm
if
opt
.
sync_bn
and
cuda
and
RANK
!=
-
1
:
model
=
torch
.
nn
.
SyncBatchNorm
.
convert_sync_batchnorm
(
model
)
.
to
(
device
)
LOGGER
.
info
(
"Using SyncBatchNorm()"
)
# Trainloader
train_loader
,
dataset
=
create_dataloader
(
train_path
,
imgsz
,
batch_size
//
WORLD_SIZE
,
gs
,
single_cls
,
hyp
=
hyp
,
augment
=
True
,
cache
=
None
if
opt
.
cache
==
"val"
else
opt
.
cache
,
rect
=
opt
.
rect
,
rank
=
LOCAL_RANK
,
workers
=
workers
,
image_weights
=
opt
.
image_weights
,
quad
=
opt
.
quad
,
prefix
=
colorstr
(
"train: "
),
shuffle
=
True
,
seed
=
opt
.
seed
,
)
labels
=
np
.
concatenate
(
dataset
.
labels
,
0
)
mlc
=
int
(
labels
[:,
0
]
.
max
())
# max label class
assert
mlc
<
nc
,
f
"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
# Process 0
if
RANK
in
{
-
1
,
0
}:
val_loader
=
create_dataloader
(
val_path
,
imgsz
,
batch_size
//
WORLD_SIZE
*
2
,
gs
,
single_cls
,
hyp
=
hyp
,
cache
=
None
if
noval
else
opt
.
cache
,
rect
=
True
,
rank
=-
1
,
workers
=
workers
*
2
,
pad
=
0.5
,
prefix
=
colorstr
(
"val: "
),
)[
0
]
if
not
resume
:
if
not
opt
.
noautoanchor
:
check_anchors
(
dataset
,
model
=
model
,
thr
=
hyp
[
"anchor_t"
],
imgsz
=
imgsz
)
# run AutoAnchor
model
.
half
()
.
float
()
# pre-reduce anchor precision
callbacks
.
run
(
"on_pretrain_routine_end"
,
labels
,
names
)
# DDP mode
if
cuda
and
RANK
!=
-
1
:
model
=
smart_DDP
(
model
)
# Model attributes
nl
=
de_parallel
(
model
)
.
model
[
-
1
]
.
nl
# number of detection layers (to scale hyps)
hyp
[
"box"
]
*=
3
/
nl
# scale to layers
hyp
[
"cls"
]
*=
nc
/
80
*
3
/
nl
# scale to classes and layers
hyp
[
"obj"
]
*=
(
imgsz
/
640
)
**
2
*
3
/
nl
# scale to image size and layers
hyp
[
"label_smoothing"
]
=
opt
.
label_smoothing
model
.
nc
=
nc
# attach number of classes to model
model
.
hyp
=
hyp
# attach hyperparameters to model
model
.
class_weights
=
labels_to_class_weights
(
dataset
.
labels
,
nc
)
.
to
(
device
)
*
nc
# attach class weights
model
.
names
=
names
# Start training
t0
=
time
.
time
()
nb
=
len
(
train_loader
)
# number of batches
nw
=
max
(
round
(
hyp
[
"warmup_epochs"
]
*
nb
),
100
)
# number of warmup iterations, max(3 epochs, 100 iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step
=
-
1
maps
=
np
.
zeros
(
nc
)
# mAP per class
results
=
(
0
,
0
,
0
,
0
,
0
,
0
,
0
)
# P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler
.
last_epoch
=
start_epoch
-
1
# do not move
scaler
=
torch
.
cuda
.
amp
.
GradScaler
(
enabled
=
amp
)
stopper
,
stop
=
EarlyStopping
(
patience
=
opt
.
patience
),
False
compute_loss
=
ComputeLoss
(
model
)
# init loss class
callbacks
.
run
(
"on_train_start"
)
LOGGER
.
info
(
f
'Image sizes {imgsz} train, {imgsz} val
\n
'
f
'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers
\n
'
f
"Logging results to {colorstr('bold', save_dir)}
\n
"
f
'Starting training for {epochs} epochs...'
)
for
epoch
in
range
(
start_epoch
,
epochs
):
# epoch ------------------------------------------------------------------
callbacks
.
run
(
"on_train_epoch_start"
)
model
.
train
()
# Update image weights (optional, single-GPU only)
if
opt
.
image_weights
:
cw
=
model
.
class_weights
.
cpu
()
.
numpy
()
*
(
1
-
maps
)
**
2
/
nc
# class weights
iw
=
labels_to_image_weights
(
dataset
.
labels
,
nc
=
nc
,
class_weights
=
cw
)
# image weights
dataset
.
indices
=
random
.
choices
(
range
(
dataset
.
n
),
weights
=
iw
,
k
=
dataset
.
n
)
# rand weighted idx
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss
=
torch
.
zeros
(
3
,
device
=
device
)
# mean losses
if
RANK
!=
-
1
:
train_loader
.
sampler
.
set_epoch
(
epoch
)
pbar
=
enumerate
(
train_loader
)
LOGGER
.
info
((
"
\n
"
+
"
%11
s"
*
7
)
%
(
"Epoch"
,
"GPU_mem"
,
"box_loss"
,
"obj_loss"
,
"cls_loss"
,
"Instances"
,
"Size"
))
if
RANK
in
{
-
1
,
0
}:
pbar
=
tqdm
(
pbar
,
total
=
nb
,
bar_format
=
TQDM_BAR_FORMAT
)
# progress bar
optimizer
.
zero_grad
()
for
i
,
(
imgs
,
targets
,
paths
,
_
)
in
pbar
:
# batch -------------------------------------------------------------
callbacks
.
run
(
"on_train_batch_start"
)
ni
=
i
+
nb
*
epoch
# number integrated batches (since train start)
imgs
=
imgs
.
to
(
device
,
non_blocking
=
True
)
.
float
()
/
255
# uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if
ni
<=
nw
:
xi
=
[
0
,
nw
]
# x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate
=
max
(
1
,
np
.
interp
(
ni
,
xi
,
[
1
,
nbs
/
batch_size
])
.
round
())
for
j
,
x
in
enumerate
(
optimizer
.
param_groups
):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x
[
"lr"
]
=
np
.
interp
(
ni
,
xi
,
[
hyp
[
"warmup_bias_lr"
]
if
j
==
0
else
0.0
,
x
[
"initial_lr"
]
*
lf
(
epoch
)])
if
"momentum"
in
x
:
x
[
"momentum"
]
=
np
.
interp
(
ni
,
xi
,
[
hyp
[
"warmup_momentum"
],
hyp
[
"momentum"
]])
# Multi-scale
if
opt
.
multi_scale
:
sz
=
random
.
randrange
(
int
(
imgsz
*
0.5
),
int
(
imgsz
*
1.5
)
+
gs
)
//
gs
*
gs
# size
sf
=
sz
/
max
(
imgs
.
shape
[
2
:])
# scale factor
if
sf
!=
1
:
ns
=
[
math
.
ceil
(
x
*
sf
/
gs
)
*
gs
for
x
in
imgs
.
shape
[
2
:]]
# new shape (stretched to gs-multiple)
imgs
=
nn
.
functional
.
interpolate
(
imgs
,
size
=
ns
,
mode
=
"bilinear"
,
align_corners
=
False
)
# Forward
with
torch
.
cuda
.
amp
.
autocast
(
amp
):
pred
=
model
(
imgs
)
# forward
loss
,
loss_items
=
compute_loss
(
pred
,
targets
.
to
(
device
))
# loss scaled by batch_size
if
RANK
!=
-
1
:
loss
*=
WORLD_SIZE
# gradient averaged between devices in DDP mode
if
opt
.
quad
:
loss
*=
4.0
# Backward
scaler
.
scale
(
loss
)
.
backward
()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if
ni
-
last_opt_step
>=
accumulate
:
scaler
.
unscale_
(
optimizer
)
# unscale gradients
torch
.
nn
.
utils
.
clip_grad_norm_
(
model
.
parameters
(),
max_norm
=
10.0
)
# clip gradients
scaler
.
step
(
optimizer
)
# optimizer.step
scaler
.
update
()
optimizer
.
zero_grad
()
if
ema
:
ema
.
update
(
model
)
last_opt_step
=
ni
# Log
if
RANK
in
{
-
1
,
0
}:
mloss
=
(
mloss
*
i
+
loss_items
)
/
(
i
+
1
)
# update mean losses
mem
=
f
"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"
# (GB)
pbar
.
set_description
(
(
"
%11
s"
*
2
+
"
%11.4
g"
*
5
)
%
(
f
"{epoch}/{epochs - 1}"
,
mem
,
*
mloss
,
targets
.
shape
[
0
],
imgs
.
shape
[
-
1
])
)
callbacks
.
run
(
"on_train_batch_end"
,
model
,
ni
,
imgs
,
targets
,
paths
,
list
(
mloss
))
if
callbacks
.
stop_training
:
return
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr
=
[
x
[
"lr"
]
for
x
in
optimizer
.
param_groups
]
# for loggers
scheduler
.
step
()
if
RANK
in
{
-
1
,
0
}:
# mAP
callbacks
.
run
(
"on_train_epoch_end"
,
epoch
=
epoch
)
ema
.
update_attr
(
model
,
include
=
[
"yaml"
,
"nc"
,
"hyp"
,
"names"
,
"stride"
,
"class_weights"
])
final_epoch
=
(
epoch
+
1
==
epochs
)
or
stopper
.
possible_stop
if
not
noval
or
final_epoch
:
# Calculate mAP
results
,
maps
,
_
=
validate
.
run
(
data_dict
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
imgsz
=
imgsz
,
half
=
amp
,
model
=
ema
.
ema
,
single_cls
=
single_cls
,
dataloader
=
val_loader
,
save_dir
=
save_dir
,
plots
=
False
,
callbacks
=
callbacks
,
compute_loss
=
compute_loss
,
)
# Update best mAP
fi
=
fitness
(
np
.
array
(
results
)
.
reshape
(
1
,
-
1
))
# weighted combination of [P, R, mAP@.5, mAP@.5-.95]
stop
=
stopper
(
epoch
=
epoch
,
fitness
=
fi
)
# early stop check
if
fi
>
best_fitness
:
best_fitness
=
fi
log_vals
=
list
(
mloss
)
+
list
(
results
)
+
lr
callbacks
.
run
(
"on_fit_epoch_end"
,
log_vals
,
epoch
,
best_fitness
,
fi
)
# Save model
if
(
not
nosave
)
or
(
final_epoch
and
not
evolve
):
# if save
ckpt
=
{
"epoch"
:
epoch
,
"best_fitness"
:
best_fitness
,
"model"
:
deepcopy
(
de_parallel
(
model
))
.
half
(),
"ema"
:
deepcopy
(
ema
.
ema
)
.
half
(),
"updates"
:
ema
.
updates
,
"optimizer"
:
optimizer
.
state_dict
(),
"opt"
:
vars
(
opt
),
"git"
:
GIT_INFO
,
# {remote, branch, commit} if a git repo
"date"
:
datetime
.
now
()
.
isoformat
(),
}
# Save last, best and delete
torch
.
save
(
ckpt
,
last
)
if
best_fitness
==
fi
:
torch
.
save
(
ckpt
,
best
)
if
opt
.
save_period
>
0
and
epoch
%
opt
.
save_period
==
0
:
torch
.
save
(
ckpt
,
w
/
f
"epoch{epoch}.pt"
)
del
ckpt
callbacks
.
run
(
"on_model_save"
,
last
,
epoch
,
final_epoch
,
best_fitness
,
fi
)
# EarlyStopping
if
RANK
!=
-
1
:
# if DDP training
broadcast_list
=
[
stop
if
RANK
==
0
else
None
]
dist
.
broadcast_object_list
(
broadcast_list
,
0
)
# broadcast 'stop' to all ranks
if
RANK
!=
0
:
stop
=
broadcast_list
[
0
]
if
stop
:
break
# must break all DDP ranks
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if
RANK
in
{
-
1
,
0
}:
LOGGER
.
info
(
f
"
\n
{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours."
)
for
f
in
last
,
best
:
if
f
.
exists
():
strip_optimizer
(
f
)
# strip optimizers
if
f
is
best
:
LOGGER
.
info
(
f
"
\n
Validating {f}..."
)
results
,
_
,
_
=
validate
.
run
(
data_dict
,
batch_size
=
batch_size
//
WORLD_SIZE
*
2
,
imgsz
=
imgsz
,
model
=
attempt_load
(
f
,
device
)
.
half
(),
iou_thres
=
0.65
if
is_coco
else
0.60
,
# best pycocotools at iou 0.65
single_cls
=
single_cls
,
dataloader
=
val_loader
,
save_dir
=
save_dir
,
save_json
=
is_coco
,
verbose
=
True
,
plots
=
plots
,
callbacks
=
callbacks
,
compute_loss
=
compute_loss
,
)
# val best model with plots
if
is_coco
:
callbacks
.
run
(
"on_fit_epoch_end"
,
list
(
mloss
)
+
list
(
results
)
+
lr
,
epoch
,
best_fitness
,
fi
)
callbacks
.
run
(
"on_train_end"
,
last
,
best
,
epoch
,
results
)
torch
.
cuda
.
empty_cache
()
return
results
def
parse_opt
(
known
=
False
):
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--weights"
,
type
=
str
,
default
=
ROOT
/
"yolov5s.pt"
,
help
=
"initial weights path"
)
parser
.
add_argument
(
"--cfg"
,
type
=
str
,
default
=
""
,
help
=
"model.yaml path"
)
parser
.
add_argument
(
"--data"
,
type
=
str
,
default
=
ROOT
/
"data/voc.yaml"
,
help
=
"dataset.yaml path"
)
parser
.
add_argument
(
"--hyp"
,
type
=
str
,
default
=
ROOT
/
"data/hyps/hyp.scratch-low.yaml"
,
help
=
"hyperparameters path"
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
100
,
help
=
"total training epochs"
)
parser
.
add_argument
(
"--batch-size"
,
type
=
int
,
default
=
4
,
help
=
"total batch size for all GPUs, -1 for autobatch"
)
parser
.
add_argument
(
"--imgsz"
,
"--img"
,
"--img-size"
,
type
=
int
,
default
=
320
,
help
=
"train, val image size (pixels)"
)
parser
.
add_argument
(
"--rect"
,
action
=
"store_true"
,
help
=
"rectangular training"
)
parser
.
add_argument
(
"--resume"
,
nargs
=
"?"
,
const
=
True
,
default
=
False
,
help
=
"resume most recent training"
)
parser
.
add_argument
(
"--nosave"
,
action
=
"store_true"
,
help
=
"only save final checkpoint"
)
parser
.
add_argument
(
"--noval"
,
action
=
"store_true"
,
help
=
"only validate final epoch"
)
parser
.
add_argument
(
"--noautoanchor"
,
action
=
"store_true"
,
help
=
"disable AutoAnchor"
)
parser
.
add_argument
(
"--noplots"
,
action
=
"store_true"
,
help
=
"save no plot files"
)
parser
.
add_argument
(
"--evolve"
,
type
=
int
,
nargs
=
"?"
,
const
=
300
,
help
=
"evolve hyperparameters for x generations"
)
parser
.
add_argument
(
"--evolve_population"
,
type
=
str
,
default
=
ROOT
/
"data/hyps"
,
help
=
"location for loading population"
)
parser
.
add_argument
(
"--resume_evolve"
,
type
=
str
,
default
=
None
,
help
=
"resume evolve from last generation"
)
parser
.
add_argument
(
"--bucket"
,
type
=
str
,
default
=
""
,
help
=
"gsutil bucket"
)
parser
.
add_argument
(
"--cache"
,
type
=
str
,
nargs
=
"?"
,
const
=
"ram"
,
help
=
"image --cache ram/disk"
)
parser
.
add_argument
(
"--image-weights"
,
action
=
"store_true"
,
help
=
"use weighted image selection for training"
)
parser
.
add_argument
(
"--device"
,
default
=
""
,
help
=
"cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser
.
add_argument
(
"--multi-scale"
,
action
=
"store_true"
,
help
=
"vary img-size +/- 50
%%
"
)
parser
.
add_argument
(
"--single-cls"
,
action
=
"store_true"
,
help
=
"train multi-class data as single-class"
)
parser
.
add_argument
(
"--optimizer"
,
type
=
str
,
choices
=
[
"SGD"
,
"Adam"
,
"AdamW"
],
default
=
"SGD"
,
help
=
"optimizer"
)
parser
.
add_argument
(
"--sync-bn"
,
action
=
"store_true"
,
help
=
"use SyncBatchNorm, only available in DDP mode"
)
parser
.
add_argument
(
"--workers"
,
type
=
int
,
default
=
8
,
help
=
"max dataloader workers (per RANK in DDP mode)"
)
parser
.
add_argument
(
"--project"
,
default
=
ROOT
/
"runs/train"
,
help
=
"save to project/name"
)
parser
.
add_argument
(
"--name"
,
default
=
"exp"
,
help
=
"save to project/name"
)
parser
.
add_argument
(
"--exist-ok"
,
action
=
"store_true"
,
help
=
"existing project/name ok, do not increment"
)
parser
.
add_argument
(
"--quad"
,
action
=
"store_true"
,
help
=
"quad dataloader"
)
parser
.
add_argument
(
"--cos-lr"
,
action
=
"store_true"
,
help
=
"cosine LR scheduler"
)
parser
.
add_argument
(
"--label-smoothing"
,
type
=
float
,
default
=
0.0
,
help
=
"Label smoothing epsilon"
)
parser
.
add_argument
(
"--patience"
,
type
=
int
,
default
=
100
,
help
=
"EarlyStopping patience (epochs without improvement)"
)
parser
.
add_argument
(
"--freeze"
,
nargs
=
"+"
,
type
=
int
,
default
=
[
0
],
help
=
"Freeze layers: backbone=10, first3=0 1 2"
)
parser
.
add_argument
(
"--save-period"
,
type
=
int
,
default
=-
1
,
help
=
"Save checkpoint every x epochs (disabled if < 1)"
)
parser
.
add_argument
(
"--seed"
,
type
=
int
,
default
=
0
,
help
=
"Global training seed"
)
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
default
=-
1
,
help
=
"Automatic DDP Multi-GPU argument, do not modify"
)
# Logger arguments
parser
.
add_argument
(
"--entity"
,
default
=
None
,
help
=
"Entity"
)
parser
.
add_argument
(
"--upload_dataset"
,
nargs
=
"?"
,
const
=
True
,
default
=
False
,
help
=
'Upload data, "val" option'
)
parser
.
add_argument
(
"--bbox_interval"
,
type
=
int
,
default
=-
1
,
help
=
"Set bounding-box image logging interval"
)
parser
.
add_argument
(
"--artifact_alias"
,
type
=
str
,
default
=
"latest"
,
help
=
"Version of dataset artifact to use"
)
# NDJSON logging
parser
.
add_argument
(
"--ndjson-console"
,
action
=
"store_true"
,
help
=
"Log ndjson to console"
)
parser
.
add_argument
(
"--ndjson-file"
,
action
=
"store_true"
,
help
=
"Log ndjson to file"
)
return
parser
.
parse_known_args
()[
0
]
if
known
else
parser
.
parse_args
()
def
main
(
opt
,
callbacks
=
Callbacks
()):
# Checks
if
RANK
in
{
-
1
,
0
}:
print_args
(
vars
(
opt
))
check_git_status
()
check_requirements
(
ROOT
/
"requirements.txt"
)
# Resume (from specified or most recent last.pt)
if
opt
.
resume
and
not
check_comet_resume
(
opt
)
and
not
opt
.
evolve
:
last
=
Path
(
check_file
(
opt
.
resume
)
if
isinstance
(
opt
.
resume
,
str
)
else
get_latest_run
())
opt_yaml
=
last
.
parent
.
parent
/
"opt.yaml"
# train options yaml
opt_data
=
opt
.
data
# original dataset
if
opt_yaml
.
is_file
():
with
open
(
opt_yaml
,
errors
=
"ignore"
)
as
f
:
d
=
yaml
.
safe_load
(
f
)
else
:
d
=
torch
.
load
(
last
,
map_location
=
"cpu"
)[
"opt"
]
opt
=
argparse
.
Namespace
(
**
d
)
# replace
opt
.
cfg
,
opt
.
weights
,
opt
.
resume
=
""
,
str
(
last
),
True
# reinstate
if
is_url
(
opt_data
):
opt
.
data
=
check_file
(
opt_data
)
# avoid HUB resume auth timeout
else
:
opt
.
data
,
opt
.
cfg
,
opt
.
hyp
,
opt
.
weights
,
opt
.
project
=
(
check_file
(
opt
.
data
),
check_yaml
(
opt
.
cfg
),
check_yaml
(
opt
.
hyp
),
str
(
opt
.
weights
),
str
(
opt
.
project
),
)
# checks
assert
len
(
opt
.
cfg
)
or
len
(
opt
.
weights
),
"either --cfg or --weights must be specified"
if
opt
.
evolve
:
if
opt
.
project
==
str
(
ROOT
/
"runs/train"
):
# if default project name, rename to runs/evolve
opt
.
project
=
str
(
ROOT
/
"runs/evolve"
)
opt
.
exist_ok
,
opt
.
resume
=
opt
.
resume
,
False
# pass resume to exist_ok and disable resume
if
opt
.
name
==
"cfg"
:
opt
.
name
=
Path
(
opt
.
cfg
)
.
stem
# use model.yaml as name
opt
.
save_dir
=
str
(
increment_path
(
Path
(
opt
.
project
)
/
opt
.
name
,
exist_ok
=
opt
.
exist_ok
))
# DDP mode
device
=
select_device
(
opt
.
device
,
batch_size
=
opt
.
batch_size
)
if
LOCAL_RANK
!=
-
1
:
msg
=
"is not compatible with YOLOv5 Multi-GPU DDP training"
assert
not
opt
.
image_weights
,
f
"--image-weights {msg}"
assert
not
opt
.
evolve
,
f
"--evolve {msg}"
assert
opt
.
batch_size
!=
-
1
,
f
"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
assert
opt
.
batch_size
%
WORLD_SIZE
==
0
,
f
"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
assert
torch
.
cuda
.
device_count
()
>
LOCAL_RANK
,
"insufficient CUDA devices for DDP command"
torch
.
cuda
.
set_device
(
LOCAL_RANK
)
device
=
torch
.
device
(
"cuda"
,
LOCAL_RANK
)
dist
.
init_process_group
(
backend
=
"nccl"
if
dist
.
is_nccl_available
()
else
"gloo"
,
timeout
=
timedelta
(
seconds
=
10800
)
)
# Train
if
not
opt
.
evolve
:
train
(
opt
.
hyp
,
opt
,
device
,
callbacks
)
# Evolve hyperparameters (optional)
else
:
# Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit)
meta
=
{
"lr0"
:
(
False
,
1e-5
,
1e-1
),
# initial learning rate (SGD=1E-2, Adam=1E-3)
"lrf"
:
(
False
,
0.01
,
1.0
),
# final OneCycleLR learning rate (lr0 * lrf)
"momentum"
:
(
False
,
0.6
,
0.98
),
# SGD momentum/Adam beta1
"weight_decay"
:
(
False
,
0.0
,
0.001
),
# optimizer weight decay
"warmup_epochs"
:
(
False
,
0.0
,
5.0
),
# warmup epochs (fractions ok)
"warmup_momentum"
:
(
False
,
0.0
,
0.95
),
# warmup initial momentum
"warmup_bias_lr"
:
(
False
,
0.0
,
0.2
),
# warmup initial bias lr
"box"
:
(
False
,
0.02
,
0.2
),
# box loss gain
"cls"
:
(
False
,
0.2
,
4.0
),
# cls loss gain
"cls_pw"
:
(
False
,
0.5
,
2.0
),
# cls BCELoss positive_weight
"obj"
:
(
False
,
0.2
,
4.0
),
# obj loss gain (scale with pixels)
"obj_pw"
:
(
False
,
0.5
,
2.0
),
# obj BCELoss positive_weight
"iou_t"
:
(
False
,
0.1
,
0.7
),
# IoU training threshold
"anchor_t"
:
(
False
,
2.0
,
8.0
),
# anchor-multiple threshold
"anchors"
:
(
False
,
2.0
,
10.0
),
# anchors per output grid (0 to ignore)
"fl_gamma"
:
(
False
,
0.0
,
2.0
),
# focal loss gamma (efficientDet default gamma=1.5)
"hsv_h"
:
(
True
,
0.0
,
0.1
),
# image HSV-Hue augmentation (fraction)
"hsv_s"
:
(
True
,
0.0
,
0.9
),
# image HSV-Saturation augmentation (fraction)
"hsv_v"
:
(
True
,
0.0
,
0.9
),
# image HSV-Value augmentation (fraction)
"degrees"
:
(
True
,
0.0
,
45.0
),
# image rotation (+/- deg)
"translate"
:
(
True
,
0.0
,
0.9
),
# image translation (+/- fraction)
"scale"
:
(
True
,
0.0
,
0.9
),
# image scale (+/- gain)
"shear"
:
(
True
,
0.0
,
10.0
),
# image shear (+/- deg)
"perspective"
:
(
True
,
0.0
,
0.001
),
# image perspective (+/- fraction), range 0-0.001
"flipud"
:
(
True
,
0.0
,
1.0
),
# image flip up-down (probability)
"fliplr"
:
(
True
,
0.0
,
1.0
),
# image flip left-right (probability)
"mosaic"
:
(
True
,
0.0
,
1.0
),
# image mixup (probability)
"mixup"
:
(
True
,
0.0
,
1.0
),
# image mixup (probability)
"copy_paste"
:
(
True
,
0.0
,
1.0
),
}
# segment copy-paste (probability)
# GA configs
pop_size
=
50
mutation_rate_min
=
0.01
mutation_rate_max
=
0.5
crossover_rate_min
=
0.5
crossover_rate_max
=
1
min_elite_size
=
2
max_elite_size
=
5
tournament_size_min
=
2
tournament_size_max
=
10
with
open
(
opt
.
hyp
,
errors
=
"ignore"
)
as
f
:
hyp
=
yaml
.
safe_load
(
f
)
# load hyps dict
if
"anchors"
not
in
hyp
:
# anchors commented in hyp.yaml
hyp
[
"anchors"
]
=
3
if
opt
.
noautoanchor
:
del
hyp
[
"anchors"
],
meta
[
"anchors"
]
opt
.
noval
,
opt
.
nosave
,
save_dir
=
True
,
True
,
Path
(
opt
.
save_dir
)
# only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
evolve_yaml
,
evolve_csv
=
save_dir
/
"hyp_evolve.yaml"
,
save_dir
/
"evolve.csv"
if
opt
.
bucket
:
# download evolve.csv if exists
subprocess
.
run
(
[
"gsutil"
,
"cp"
,
f
"gs://{opt.bucket}/evolve.csv"
,
str
(
evolve_csv
),
]
)
# Delete the items in meta dictionary whose first value is False
del_
=
[
item
for
item
,
value_
in
meta
.
items
()
if
value_
[
0
]
is
False
]
hyp_GA
=
hyp
.
copy
()
# Make a copy of hyp dictionary
for
item
in
del_
:
del
meta
[
item
]
# Remove the item from meta dictionary
del
hyp_GA
[
item
]
# Remove the item from hyp_GA dictionary
# Set lower_limit and upper_limit arrays to hold the search space boundaries
lower_limit
=
np
.
array
([
meta
[
k
][
1
]
for
k
in
hyp_GA
.
keys
()])
upper_limit
=
np
.
array
([
meta
[
k
][
2
]
for
k
in
hyp_GA
.
keys
()])
# Create gene_ranges list to hold the range of values for each gene in the population
gene_ranges
=
[(
lower_limit
[
i
],
upper_limit
[
i
])
for
i
in
range
(
len
(
upper_limit
))]
# Initialize the population with initial_values or random values
initial_values
=
[]
# If resuming evolution from a previous checkpoint
if
opt
.
resume_evolve
is
not
None
:
assert
os
.
path
.
isfile
(
ROOT
/
opt
.
resume_evolve
),
"evolve population path is wrong!"
with
open
(
ROOT
/
opt
.
resume_evolve
,
errors
=
"ignore"
)
as
f
:
evolve_population
=
yaml
.
safe_load
(
f
)
for
value
in
evolve_population
.
values
():
value
=
np
.
array
([
value
[
k
]
for
k
in
hyp_GA
.
keys
()])
initial_values
.
append
(
list
(
value
))
# If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population
else
:
yaml_files
=
[
f
for
f
in
os
.
listdir
(
opt
.
evolve_population
)
if
f
.
endswith
(
".yaml"
)]
for
file_name
in
yaml_files
:
with
open
(
os
.
path
.
join
(
opt
.
evolve_population
,
file_name
))
as
yaml_file
:
value
=
yaml
.
safe_load
(
yaml_file
)
value
=
np
.
array
([
value
[
k
]
for
k
in
hyp_GA
.
keys
()])
initial_values
.
append
(
list
(
value
))
# Generate random values within the search space for the rest of the population
if
initial_values
is
None
:
population
=
[
generate_individual
(
gene_ranges
,
len
(
hyp_GA
))
for
_
in
range
(
pop_size
)]
elif
pop_size
>
1
:
population
=
[
generate_individual
(
gene_ranges
,
len
(
hyp_GA
))
for
_
in
range
(
pop_size
-
len
(
initial_values
))]
for
initial_value
in
initial_values
:
population
=
[
initial_value
]
+
population
# Run the genetic algorithm for a fixed number of generations
list_keys
=
list
(
hyp_GA
.
keys
())
for
generation
in
range
(
opt
.
evolve
):
if
generation
>=
1
:
save_dict
=
{}
for
i
in
range
(
len
(
population
)):
little_dict
=
{
list_keys
[
j
]:
float
(
population
[
i
][
j
])
for
j
in
range
(
len
(
population
[
i
]))}
save_dict
[
f
"gen{str(generation)}number{str(i)}"
]
=
little_dict
with
open
(
save_dir
/
"evolve_population.yaml"
,
"w"
)
as
outfile
:
yaml
.
dump
(
save_dict
,
outfile
,
default_flow_style
=
False
)
# Adaptive elite size
elite_size
=
min_elite_size
+
int
((
max_elite_size
-
min_elite_size
)
*
(
generation
/
opt
.
evolve
))
# Evaluate the fitness of each individual in the population
fitness_scores
=
[]
for
individual
in
population
:
for
key
,
value
in
zip
(
hyp_GA
.
keys
(),
individual
):
hyp_GA
[
key
]
=
value
hyp
.
update
(
hyp_GA
)
results
=
train
(
hyp
.
copy
(),
opt
,
device
,
callbacks
)
callbacks
=
Callbacks
()
# Write mutation results
keys
=
(
"metrics/precision"
,
"metrics/recall"
,
"metrics/mAP_0.5"
,
"metrics/mAP_0.5:0.95"
,
"val/box_loss"
,
"val/obj_loss"
,
"val/cls_loss"
,
)
print_mutation
(
keys
,
results
,
hyp
.
copy
(),
save_dir
,
opt
.
bucket
)
fitness_scores
.
append
(
results
[
2
])
# Select the fittest individuals for reproduction using adaptive tournament selection
selected_indices
=
[]
for
_
in
range
(
pop_size
-
elite_size
):
# Adaptive tournament size
tournament_size
=
max
(
max
(
2
,
tournament_size_min
),
int
(
min
(
tournament_size_max
,
pop_size
)
-
(
generation
/
(
opt
.
evolve
/
10
))),
)
# Perform tournament selection to choose the best individual
tournament_indices
=
random
.
sample
(
range
(
pop_size
),
tournament_size
)
tournament_fitness
=
[
fitness_scores
[
j
]
for
j
in
tournament_indices
]
winner_index
=
tournament_indices
[
tournament_fitness
.
index
(
max
(
tournament_fitness
))]
selected_indices
.
append
(
winner_index
)
# Add the elite individuals to the selected indices
elite_indices
=
[
i
for
i
in
range
(
pop_size
)
if
fitness_scores
[
i
]
in
sorted
(
fitness_scores
)[
-
elite_size
:]]
selected_indices
.
extend
(
elite_indices
)
# Create the next generation through crossover and mutation
next_generation
=
[]
for
_
in
range
(
pop_size
):
parent1_index
=
selected_indices
[
random
.
randint
(
0
,
pop_size
-
1
)]
parent2_index
=
selected_indices
[
random
.
randint
(
0
,
pop_size
-
1
)]
# Adaptive crossover rate
crossover_rate
=
max
(
crossover_rate_min
,
min
(
crossover_rate_max
,
crossover_rate_max
-
(
generation
/
opt
.
evolve
))
)
if
random
.
uniform
(
0
,
1
)
<
crossover_rate
:
crossover_point
=
random
.
randint
(
1
,
len
(
hyp_GA
)
-
1
)
child
=
population
[
parent1_index
][:
crossover_point
]
+
population
[
parent2_index
][
crossover_point
:]
else
:
child
=
population
[
parent1_index
]
# Adaptive mutation rate
mutation_rate
=
max
(
mutation_rate_min
,
min
(
mutation_rate_max
,
mutation_rate_max
-
(
generation
/
opt
.
evolve
))
)
for
j
in
range
(
len
(
hyp_GA
)):
if
random
.
uniform
(
0
,
1
)
<
mutation_rate
:
child
[
j
]
+=
random
.
uniform
(
-
0.1
,
0.1
)
child
[
j
]
=
min
(
max
(
child
[
j
],
gene_ranges
[
j
][
0
]),
gene_ranges
[
j
][
1
])
next_generation
.
append
(
child
)
# Replace the old population with the new generation
population
=
next_generation
# Print the best solution found
best_index
=
fitness_scores
.
index
(
max
(
fitness_scores
))
best_individual
=
population
[
best_index
]
print
(
"Best solution found:"
,
best_individual
)
# Plot results
plot_evolve
(
evolve_csv
)
LOGGER
.
info
(
f
'Hyperparameter evolution finished {opt.evolve} generations
\n
'
f
"Results saved to {colorstr('bold', save_dir)}
\n
"
f
'Usage example: $ python train.py --hyp {evolve_yaml}'
)
def
generate_individual
(
input_ranges
,
individual_length
):
individual
=
[]
for
i
in
range
(
individual_length
):
lower_bound
,
upper_bound
=
input_ranges
[
i
]
individual
.
append
(
random
.
uniform
(
lower_bound
,
upper_bound
))
return
individual
def
run
(
**
kwargs
):
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
opt
=
parse_opt
(
True
)
for
k
,
v
in
kwargs
.
items
():
setattr
(
opt
,
k
,
v
)
main
(
opt
)
return
opt
if
__name__
==
"__main__"
:
opt
=
parse_opt
()
main
(
opt
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment