Commit 7508d820 by 前钰

Upload New File

parent c9b3ffb6
import numpy as np
import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
def linear_kernel(x1, x2):
return np.dot(x1, x2)
def polynomial_kernel(x1, x2, p=3):
return (1 + np.dot(x1, x2)) ** p
# rbf
def gaussian_kernel(x, y, sigma=5.0):
return np.exp(-linalg.norm(x-y) ** 2 / (2 * sigma ** 2))
class SVM(object):
def __init__(self, kernel=linear_kernel, C=None):
self.kernel = kernel
# C=0: 硬间隔; 如果C不为0:软间隔
self.C = C
if self.C is not None: self.C = float(self.C)
def train(self, X, y):
n_smaples, n_features = X.shape
K = np.zeros((n_smaples, n_smaples))
for i in range(n_smaples):
for j in range(n_smaples):
K[i, j] = self.kernel(X[i], X[j])
P = cvxopt.matrix(np.outer(y, y) * K)
q = cvxopt.matrix(np.ones(n_smaples) * -1)
A = cvxopt.matrix(y, (1, n_smaples))
b = cvxopt.matrix(0.0)
if self.C is None:
G = cvxopt.matrix(np.diag(np.ones(n_smaples) * -1))
h = cvxopt.matrix(np.zeros(n_smaples))
else:
tmp1 = np.diag(np.ones(n_smaples) * -1)
tmp2 = np.identity(n_smaples)
G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
tmp1 = np.zeros(n_smaples)
tmp2 = np.ones(n_smaples) * self.C
h = cvxopt.matrix(np.hstack((tmp1, tmp2)))
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
#[x1, x2, x3, ...]
a = np.ravel(solution['x'])
# 支持向量
sv = a > 1e-5
ind = np.arange(len(a))[sv]
self.a = a[sv]
self.sv = X[sv]
self.sv_y = y[sv]
print('%d support vectors out of %d points' % (len(self.a), n_smaples))
# b
self.b = 0
for n in range(len(self.a)):
self.b += self.sv_y[n]
self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])
self.b /= len(self.a)
# w
if self.kernel == linear_kernel:
self.w = np.zeros(n_features)
for n in range(len(self.a)):
self.w += self.a[n] * self.sv_y[n] * self.sv[n]
else:
self.w = None
def project(self, X):
if self.w is not None:
# 线性核
return np.dot(X, self.w) + self.b
else:
# 非线性核
y_predict = np.zeros(len(X))
for i in range(len(X)):
s = 0
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
s += a * sv_y * self.kernel(X[i], sv)
y_predict[i] = s
return y_predict + self.b
def predict(self, X):
return np.sign(self.project(X))
if __name__ == '__main__':
import pylab as pl
# 线性可分
def gen_lin_separable_data():
mean1 = np.array([0, 2])
mean2 = np.array([2, 0])
cov = np.array([[0.8, 0.6], [0.6, 0.8]])
X1 = np.random.multivariate_normal(mean1, cov, 100)
X2 = np.random.multivariate_normal(mean2, cov, 100)
y1 = np.ones(len(X1))
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
# 线性不可分-非线性
def gen_non_lin_separable_data():
mean1 = [-1, 2]
mean2 = [1, -1]
mean3 = [4, -4]
mean4 = [-4, 4]
cov = [[1.0, 0.8], [0.8, 1.0]]
X1= np.random.multivariate_normal(mean1, cov, 50)
X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))
X2 = np.random.multivariate_normal(mean2, cov, 50)
X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))
y1 = np.ones(len(X1))
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
# 线性不可分:有干扰项
def gen_lin_separable_overlap_data():
mean1 = np.array([0, 2])
mean2 = np.array([2, 0])
cov = np.array([[1.5, 1.0], [1.0, 1.5]])
X1 = np.random.multivariate_normal(mean1, cov, 100)
X2 = np.random.multivariate_normal(mean2, cov, 100)
y1 = np.ones(len(X1))
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
def split_train(X1, y1, X2, y2):
X1_train = X1[:90]
X2_train = X2[:90]
y1_train = y1[:90]
y2_train = y2[:90]
X_train = np.vstack((X1_train, X2_train))
y_train = np.hstack((y1_train, y2_train))
return X_train, y_train
def split_test(X1, y1, X2, y2):
X1_test = X1[:90]
X2_test = X2[:90]
y1_test = y1[:90]
y2_test = y2[:90]
X_test = np.vstack((X1_test, X2_test))
y_test = np.hstack((y1_test, y2_test))
return X_test, y_test
def plot_margin(X1_train, X2_train, clf):
def f(x, w, b, c=0):
return (-w[0] * x -b + c) / w[1]
pl.plot(X1_train[:, 0], X1_train[:, 1] , 'ro')
pl.plot(X2_train[:, 0], X2_train[:, 1] , 'bo')
pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c='g')
# w.x + b = 0
a0 = -4;a1 = f(a0, clf.w, clf.b)
b0 = 4 ;b1 = f(b0, clf.w, clf.b)
pl.plot([a0, b0], [a1, b1], 'k')
# w.x + b = 1
a0 = -4; a1 = f(a0, clf.w, 1)
b0 = 4; b1 = f(b0, clf.w, 1)
pl.plot([a0, b0], [a1, b1], 'k--')
# w.x + b = -1
a0 = -4; a1 = f(a0, clf.w, -1)
b0 = 4 ;b1 = f(b0, clf.w, -1)
pl.plot([a0, b0], [a1, b1], 'k--')
pl.axis('tight')
pl.show()
def plot_contor(X1_train, X2_train, clf):
pl.plot(X1_train[:, 0], X1_train[:, 1], 'ro')
pl.plot(X2_train[:, 0], X2_train[:, 1], 'bo')
pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c='g')
X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50))
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])
z = clf.project(X).reshape(X1.shape)
pl.contour(X1, X2, z, [0.0], colors='k', linewidths=1, origin='lower')
pl.contour(X1, X2, z + 1, [0.0], colors='grey', linewidths=1, origin='lower')
pl.contour(X1, X2, z - 1, [0.0], colors='grey', linewidths=1, origin='lower')
pl.axis('tight')
pl.show()
def test_linear():
X1, y1, X2, y2 = gen_lin_separable_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf =SVM()
clf.train(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print('%d out of %d predictions correct.' % (correct, len(y_predict)))
plot_margin(X_train[y_train==1], X_train[y_train==-1], clf)
def test_non_linear():
X1, y1, X2, y2 = gen_non_lin_separable_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf = SVM(polynomial_kernel)
clf.train(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print('%d out of %d predictions correct.' % (correct, len(y_predict)))
plot_contor(X_train[y_train == 1], X_train[y_train == -1], clf)
def test_soft():
X1, y1, X2, y2 = gen_lin_separable_overlap_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf = SVM(C=1000.1)
clf.train(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print('%d out of %d predictions correct.' % (correct, len(y_predict)))
plot_contor(X_train[y_train == 1], X_train[y_train == -1], clf)
# test_linear()
# test_soft()
test_non_linear()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment